173 research outputs found

    Coordination of chemical analyses under the European Human Biomonitoring Initiative (HBM4EU): Concepts, procedures and lessons learnt

    Get PDF
    The European Human Biomonitoring Initiative (HBM4EU) ran from 2017 to 2022 with the aim of advancing and harmonizing human biomonitoring in Europe. More than 40,000 analyses were performed on human samples in different human biomonitoring studies in HBM4EU, addressing the chemical exposure of the general population, temporal developments, occupational exposure and a public health intervention on mercury in populations with high fish consumption. The analyses covered 15 priority groups of organic chemicals and metals and were carried out by a network of laboratories meeting the requirements of a comprehensive quality assurance and control system. The coordination of the chemical analyses included establishing contacts between sample owners and qualified laboratories and monitoring the progress of the chemical analyses during the analytical phase, also addressing status and consequences of Covid-19 measures. Other challenges were related to the novelty and complexity of HBM4EU, including administrative and financial matters and implementation of standardized procedures. Many individual contacts were necessary in the initial phase of HBM4EU. However, there is a potential to develop more streamlined and standardized communication and coordination in the analytical phase of a consolidated European HBM programme.This study was part of the HBM4EU project receiving funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 733032. The co-funding of the HBM4EU partner countries is gratefully acknowledged. The authors thank all sample owners and qualified laboratories for the excellent collaboration. The authors also acknowledge the HBM4EU partners in charge of upstream (WP7, WP8) and downstream (WP10) processes for the smooth connections with the analytical phase.S

    Use of human biomonitoring to evaluate exposure to cadmium in the Portuguese population

    Get PDF
    O cádmio é um metal pesado tóxico e carcinogénico, que representa uma ameaça séria para a saúde humana. A população geral pode encontrar-se exposta ao cádmio por diversas vias e o estudo INSEF-ExpoQuim visou caracterizar a exposição da população portuguesa adulta (28-39 anos ) a este agente químico através de um estudo transversal. Este estudo incluiu 295 indivíduos, os quais reponderam a um questionário (dados sociodemográficos, de estilos de vida e possíveis vias de exposição ) e facultaram uma amostra de urina para quantificação de cádmio por espectrometria de massa com plasma indutivo acoplado ( ICP- -MS ). Observou-se uma média geométrica de 0,092 μg Cd/g creatinina [ IC ( 95%): 0,084-0,101 ], apresentando as mulheres valores mais elevados ( 0,103 vs 0,079 ), bem como os fumadores ( 0,135 vs 0,081).Cadmium is a toxic and carcinogenic heavy metal, that presents a serious threat to human health. The general population can be exposed through several pathways and the study INSEF-ExpoQuim aimed to characterise the exposure of the Portuguese adult population (28-29 years) to this chemical agent through the development of a cross-sectional study. This study has included 295 individuals, that have answered to a questionnaire (sociodemographic characteristics, lifestyle and possible exposure sources) and provided a urine sample for the quantification of cadmium by inductively coupled plasma mass spectrometry ( ICP-MS). A geometric mean of 0.092 μg Cd/g creatinine [ 95%CI: 0.084-0.101 μg Cd/g creatinine ] was observed, with females ( 0.103 vs 0.079) and smokers ( 0.135 vs 0.081) presenting higher values.O estudo INSEF-ExpoQuim foi cofinanciado no âmbito do projeto HBM4EU, que recebeu financiamento do programa de investigação e inovação Horizonte 2020 da União Europeia, ao abrigo da convenção de subvenção n.º 733032. O INSEF foi desenvolvido como parte integrante do projeto Improvement of epidemiological health information to support public health decision and management in Portugal Towards reduced inequalities, improved health, and bilateral cooperation, tendo beneficiado de um apoio financeiro de 1 500 000 euros concedido pela Islândia, Liechtenstein e Noruega, através das EEA Grants.info:eu-repo/semantics/publishedVersio

    HBM4EU combines and harmonises human biomonitoring data across the EU, building on existing capacity - The HBM4EU survey

    Get PDF
    As part of the Human Biomonitoring for Europe (HBM4EU) initiative a human biomonitoring (HBM) survey is conducted in 21 countries. This survey builds on existing HBM capacity in Europe by aligning national or regional HBM studies. The survey targets 3 age groups (i) children aged 6-11 years, (ii) teenagers aged 12-19 years and (iii) young adults aged 20-39 years and includes a total of 9493 participants (3151 children, 2953 teenagers and 3389 young adults). Depending on the age group, internal exposure to phthalates and substitute Hexamoll® DINCH, brominated and organophosphorus flame retardants, per-/poly-fluorinated compounds, cadmium, bisphenols and/or polycyclic aromatic hydrocarbons are assessed. The main goal of the programme is to obtain quality controlled and comparable HBM data of exposure to chemicals, prioritized under HBM4EU, with European wide coverage to inform the development of environment and health policies. This paper describes the framework of the HBM4EU survey and the approach that has been applied to align European HBM initiatives across Europe.HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principle investigators of the contributing studies for their participation and contribution to the joint HBM4EU survey and the national programme owners for their financial support. In addition we want to thank Dr. Liesbeth Bruckers and Dr. Michael Schümann.S

    Position paper on management of personal data in environment and health research in Europe

    Get PDF
    Management of datasets that include health information and other sensitive personal information of European study participants has to be compliant with the General Data Protection Regulation (GDPR, Regulation (EU) 2016/679). Within scientific research, the widely subscribed'FAIR' data principles should apply, meaning that research data should be findable, accessible, interoperable and re-usable. Balancing the aim of open science driven FAIR data management with GDPR compliant personal data protection safeguards is now a common challenge for many research projects dealing with (sensitive) personal data. In December 2020 a workshop was held with representatives of several large EU research consortia and of the European Commission to reflect on how to apply the FAIR data principles for environment and health research (E&H). Several recent data intensive EU funded E&H research projects face this challenge and work intensively towards developing solutions to access, exchange, store, handle, share, process and use such sensitive personal data, with the aim to support European and transnational collaborations. As a result, several recommendations, opportunities and current limitations were formulated. New technical developments such as federated data management and analysis systems, machine learning together with advanced search software, harmonized ontologies and data quality standards should in principle facilitate the FAIRification of data. To address ethical, legal, political and financial obstacles to the wider re-use of data for research purposes, both specific expertise and underpinning infrastructure are needed. There is a need for the E&H research data to find their place in the European Open Science Cloud. Communities using health and population data, environmental data and other publicly available data have to interconnect and synergize. To maximize the use and re-use of environment and health data, a dedicated supporting European infrastructure effort, such as the EIRENE research infrastructure within the ESFRI roadmap 2021, is needed that would interact with existing infrastructures

    Association of exposure to perfluoroalkyl substances (PFAS) and phthalates with thyroid hormones in adolescents from HBM4EU aligned studies

    Get PDF
    Background: Perfluoroalkyl substances (PFAS) and phthalates are synthetic chemicals widely used in various types of consumer products. There is epidemiological and experimental evidence that PFAS and phthalates may alter thyroid hormone levels; however, studies in children and adolescents are limited. Aim: To investigate the association of exposure to PFAS and phthalate with serum levels of thyroid hormones in European adolescents. Methods: A cross-sectional study was conducted in 406 female and 327 male adolescents (14–17 years) from Belgium, Slovakia, and Spain participating in the Aligned Studies of the HBM4EU Project (FLEHS IV, PCB cohort, and BEA, respectively). Concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), free thyroxine (FT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) were measured in sera from study participants, and urinary metabolites of six phthalates (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and the non-phthalate plasticizer DINCH® were quantified in spot urine samples. Associations were assessed with linear regression and g-computational models for mixtures. Effect modification by sex was examined. Results: In females, serum PFOA and the PFAS mixture concentrations were associated with lower FT4 and higher FT3 levels; MEP and the sums of DEHP, DiNP, and DINCH® metabolites ( ∑DEHP, ∑DiNP, and ∑DINCH) were associated with higher FT4; ∑DEHP with lower FT3; and the phthalate/DINCH® metabolite mixture with higher FT4 and lower FT3. In males, PFOA was associated with lower FT4 and the PFAS mixture with higher TSH levels and lower FT4/TSH ratio; MEP and ∑DiNP were associated with higher FT4; and MBzP, ∑DEHP, and the phthalate/DINCH® metabolite mixture with lower TSH and higher FT4/TSH. PFOA, mono-(2-ethyl-5-hydroxyhexyl) phthalate (OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (oxo-MEHP), and monocarboxyoctyl phthalate (MCOP) made the greatest contribution to the mixture effect. Conclusions: Results suggest that exposure to PFAS and phthalates is associated with sex-specific differences in thyroid hormone levels in adolescent

    Prenatal exposure to persistent organic pollutants and changes in infant growth and childhood growth trajectories

    Get PDF
    BACKGROUND: Children are born with a burden of persistent organic pollutants (POPs) which may have endocrine disrupting properties and have been postulated to contribute to the rise in childhood obesity. The current evidence is equivocal, which may partly because many studies investigate the effects at one time point during childhood. We assessed associations between prenatal exposure to POPs and growth during infancy and childhood. METHODS: We used data from two Belgian cohorts with cord blood measurements of five organochlorines [(dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB), polychlorinated biphenyls (PCB-138, -150, -180)] (N = 1418) and two perfluoroalkyl substances [perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS)] (N = 346). We assessed infant growth, defined as body mass index (BMI) z-score change between birth and 2 years, and childhood growth, characterized as BMI trajectory from birth to 8 years. To evaluate associations between POP exposures and infant growth, we applied a multi-pollutant approach, using penalized elastic net regression with stability selection, controlling for covariates. To evaluate associations with childhood growth, we used single-pollutant linear mixed models with random effects for child individual, parametrized using a natural cubic spline formulation. RESULTS: PCB-153 was associated with increased and p,p'-DDE with decreased infant growth, although these results were imprecise. No clear association between any of the exposures and longer-term childhood growth trajectories was observed. We did not find evidence of effect modification by child sex. CONCLUSION: Our results suggest that prenatal exposure to PCB-153 and p,p'-DDE may affect infant growth in the first two years, with no evidence of more persistent effects

    Human urinary arsenic species, associated exposure determinants and potential health risks assessed in the HBM4EU Aligned Studies

    Get PDF
    The European Joint Programme HBM4EU coordinated and advanced human biomonitoring (HBM) in Europe in order to provide science-based evidence for chemical policy development and improve chemical management. Arsenic (As) was selected as a priority substance under the HBM4EU initiative for which open, policy relevant questions like the status of exposure had to be answered. Internal exposure to inorganic arsenic (iAs), measured as Toxic Relevant Arsenic (TRA) (the sum of As(III), As(V), MMA, DMA) in urine samples of teenagers differed among the sampling sites (BEA (Spain) > Riksmaten adolescents (Sweden), ESTEBAN (France) > FLEHS IV (Belgium), SLO CRP (Slovenia)) with geometric means between 3.84 and 8.47 μg/L. The ratio TRA to TRA + arsenobetaine or the ratio TRA to total arsenic varied between 0.22 and 0.49. Main exposure determinants for TRA were the consumption of rice and seafood. When all studies were combined, Pearson correlation analysis showed significant associations between all considered As species. Higher concentrations of DMA, quantitatively a major constituent of TRA, were found with increasing arsenobetaine concentrations, a marker for organic As intake, e.g. through seafood, indicating that other sources of DMA than metabolism of inorganic As exist, e.g. direct intake of DMA or via the intake of arsenosugars or -lipids. Given the lower toxicity of DMA(V) versus iAs, estimating the amount of DMA not originating from iAs, or normalizing TRA for arsenobetaine intake could be useful for estimating iAs exposure and risk. Comparing urinary TRA concentrations with formerly derived biomonitoring equivalent (BE) for non-carcinogenic effects (6.4 μg/L) clearly shows that all 95th percentile exposure values in the different studies exceeded this BE. This together with the fact that cancer risk may not be excluded even at lower iAs levels, suggests a possible health concern for the general population of Europe.HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all investigators of the contributing studies for their participation and contribution to the joint HBM4EU survey and the national programme owners for their financial support. Also thanks to the participating teenagers and their families, the field workers that collected the samples. The FLEHS IV study was conducted within the framework of the Flemish Center of Expertise on Environment and Health (FLEHS 2016–2020) and funded by the Flemish Government, Department of Environment & Spatial Development. We thank the teenagers and their families that participated in the study, the field workers from the Pro vincial Institute of Hygiene and VITO for the sample and data collection. All collaborators of the scientific teams of the Flemish Center of Expertise on Environment and Health (https://www.milieu-en-gezondheid.be/en/about-the-center-0) and Karen Van Campenhout and Caroline Teughels from the Flemish Department of Environment & Spatial Development for their valuable input in the field work committee. The funding of the German Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection is gratefully acknowledged. BEA study was co-funded by the Spanish Ministry of Agriculture, Fisheries and Food and the Insituto de Salud Carlos III (SEG 1321/15). In Slovenia the work was cofounded by the Slovenian Research Funding Agency – ARRS through a research programme P-0143. ESTEBAN was Funded by Sant´e Publique France and the French ministries of Health and the Environment. The study of RIKSMATEN was conducted and mainly financed by the Swedish Food Agency. Financial support was provided from the Swedish Civil Contingencies Agency and from the Swedish Environmental Pro tection Agency (SEPA).S

    Cadmium exposure in adults across Europe: Results from the HBM4EU Aligned Studies survey 2014-2020

    Get PDF
    ReviewThe objectives of the study were to estimate the current exposure to cadmium (Cd) in Europe, potential differences between the countries and geographic regions, determinants of exposure and to derive European exposure levels. The basis for this work was provided by the European Human Biomonitoring Initiative (HBM4EU) which established a framework for alignment of national or regional HBM studies. For the purpose of Cd exposure assessment, studies from 9 European countries (Iceland, Denmark, Poland, Czech Republic, Croatia, Portugal, Germany, France, Luxembourg) were included and urine of 20–39 years old adults sampled in the years 2014–2021 (n = 2510). The measurements in urine were quality assured by the HBM4EU quality assurance/quality control scheme, study participants' questionnaire data were post-harmonized. Spatially resolved external data, namely Cd concentrations in soil, agricultural areas, phosphate fertilizer application, traffic density and point source Cd release were collected for the respective statistical territorial unit (NUTS). There were no distinct geographic patterns observed in Cd levels in urine, although the data revealed some differences between the specific study sites. The levels of exposure were otherwise similar between two time periods within the last decade (DEMOCOPHES - 2011–2012 vs. HBM4EU Aligned Studies, 2014–2020). The age-dependent alert values for Cd in urine were exceeded by 16% of the study participants. Exceedances in the different studies and locations ranged from 1.4% up to 42%. The studies with largest extent of exceedance were from France and Poland. Association analysis with individual food consumption data available from participants’ questionnaires showed an important contribution of vegetarian diet to the overall exposure, with 35% higher levels in vegetarians as opposed to non-vegetarians. For comparison, increase in Cd levels due to smoking was 25%. Using NUTS2-level external data, positive associations between HBM data and percentage of cropland and consumption of Cd-containing mineral phosphate fertilizer were revealed, which indicates a significant contribution of mineral phosphate fertilizers to human Cd exposure through diet. In addition to diet, traffic and point source release were identified as significant sources of exposure in the study population. The findings of the study support the recommendation by EFSA to reduce Cd exposure as also the estimated mean dietary exposure of adults in the EU is close or slightly exceeding the tolerable weekly intake. It also indicates that regulations are not protecting the population sufficiently.The HBM4EU project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 733032. Co-funding for the HBM4EU Aligned Studies has been provided by the national programs: Sant´e Publique France and the French ministries of Health and the Environment (ESTEBAN, France); MEYS (No. LM2018121), and Cetocoen Plus project (CZ.02.1.01/0.0/ 0.0/15_003/0000469) (CELSPAC:YA, Czech Republic); the Ministry of Science and Higher Education of Poland (contract no.3764/H2020/ 2017/2) (POALES, Poland); Public Health Fund (Diet_HBM, Iceland); Croatian Institute of Public Health (HBM survey in Croatia); National Institute of Health Dr Ricardo Jorge (INSEF_ExpoQuim, Portugal); German Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) (ESB, Germany); Luxembourg Institute of Health (LIH), the Laboratoire national de sant´e (human biomonitoring part), the Ministry of Higher Education and Research of Luxembourg and the Ministry of Health of Luxembourg (Oriscav-Lux2, Luxembourg); Candy Foundation (Nos. 2017–224 and 2020–344), Absalon Foundation (No. F-23653-01), The Danish Environmental Protection Agency (Miljøstyrelsen: MST-621-00012 Center on Endocrine Disrupters), The Research council of Capital Region of Denmark (No. E− 22717-11), Research council of Rigshospitalet (Nos. E− 22717-12, E− 22717-07, E− 22717-08), Aase og Ejnar Danielsens Fond (No. 10–001874), International Research and Research Training Centre for Male Reproduction and Child Health (EDMaRC, No. 1500321/1604357) (CPHMINIPUB (parents) and DYMS, Denmark). J.Kl. and L.A. thank the CETOCOEN EXCELLENCE project No. CZ.02.1.01/0.0/0.0/17_043/ 0009632 financed by MEYS for supportive background, and supported from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 857560.info:eu-repo/semantics/publishedVersio

    Prenatal and postnatal exposure to persistent organic pollutants and Infant growth: A pooled analysis of seven european birth cohorts

    Get PDF
    Background: Infant exposure to persistent organic pollutants (POPs) may contribute to obesity. However, many studies so far have been small, focused on transplacental exposure, used an inappropriate measure to assess postnatal exposure through breastfeeding if any, or did not discern between prenatal and postnatal effects. Objectives: We investigated prenatal and postnatal exposure to POPs and infant growth (a predictor of obesity). Methods: We pooled data from seven European birth cohorts with biomarker concentrations of polychlorinated biphenyl 153 (PCB-153) (n = 2,487), and p,p´-dichlorodiphenyldichloroethylene (p,p´-DDE) (n = 1,864), estimating prenatal and postnatal POPs exposure using a validated pharmacokinetic model. Growth was change in weight-for-age z-score between birth and 24 months. Per compound, multilevel models were fitted with either POPs total exposure from conception to 24 months or prenatal or postnatal exposure. Results: We found a significant increase in growth associated with p,p´-DDE, seemingly due to prenatal exposure (per interquartile increase in exposure, adjusted β = 0.12; 95% CI: 0.03, 0.22). Due to heterogeneity across cohorts, this estimate cannot be considered precise, but does indicate that an association with infant growth is present on average. In contrast, a significant decrease in growth was associated with postnatal PCB-153 exposure (β = –0.10; 95% CI: –0.19, –0.01). Conclusion: To our knowledge, this is the largest study to date of POPs exposure and infant growth, and it contains state-of-the-art exposure modeling. Prenatal p,p´-DDE was associated with increased infant growth, and postnatal PCB-153 with decreased growth at European exposure levels

    Concurrent Assessment of Phthalates/HEXAMOLL® DINCH Exposure and Wechsler Intelligence Scale for Children Performance in Three European Cohorts of the HBM4EU Aligned Studies

    Get PDF
    Information about the effects of phthalates and non-phthalate substitute cyclohexane-1,2-dicarboxylic acid diisononyl ester (HEXAMOLL® DINCH) on children's neurodevelopment is limited. The aim of the present research is to evaluate the association between phthalate/HEXAMOLL® DINCH exposure and child neurodevelopment in three European cohorts involved in HBM4EU Aligned Studies. Participating subjects were school-aged children belonging to the Northern Adriatic cohort II (NAC-II), Italy, Odense Child Cohort (OCC), Denmark, and PCB cohort, Slovakia. In each cohort, children's neurodevelopment was assessed through the Full-Scale Intelligence Quotient score (FSIQ) of the Wechsler Intelligence Scale of Children test using three different editions. The children's urine samples, collected for one point in time concurrently with the neurodevelopmental evaluation, were analyzed for several phthalates/HEXAMOLL® DINCH biomarkers. The relation between phthalates/HEXAMOLL® DINCH and FSIQ was explored by applying separate multiple linear regressions in each cohort. The means and standard deviations of FSIQ were 109 ± 11 (NAC-II), 98 ± 12 (OCC), and 81 ± 15 (PCB cohort). In NAC-II, direct associations between FSIQ and DEHP's biomarkers were found: 5OH-MEHP+5oxo-MEHP (β = 2.56; 95% CI 0.58-4.55; N = 270), 5OH-MEHP+5cx-MEPP (β = 2.48; 95% CI 0.47-4.49; N = 270) and 5OH-MEHP (β = 2.58; 95% CI 0.65-4.51; N = 270). On the contrary, in the OCC the relation between DEHP's biomarkers and FSIQ tended to be inverse but imprecise (p-value ≥ 0.10). No associations were found in the PCB cohort. FSIQ was not associated with HEXAMOLL® DINCH in any cohort. In conclusion, these results do not provide evidence of an association between concurrent phthalate/DINCHHEXAMOLLR DINCH exposure and IQ in children.This work received external funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 733032 [“European Human Biomonitoring Initiative” (HBM4EU)] and received co-funding from the author’s organizations. NAC-II: This research was funded by: the European Union through its Sixth Framework Program for RTD (contract “PHIME” No. FOOD-CT-2006-016253); the Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy (RC 12/12 funded by Ministry of Health—Italy); CROME LIFE Project “Cross-Mediterranean Environment and Health Network” (LIFE12 ENV/GR/001040). OCC: The cohort was funded by the Odense University Hospital, Denmark; the Region of Southern Denmark, The Municipality of Odense, Denmark; The University of Southern Denmark; the Mental Health Service of the Region of Southern Denmark; Odense Patient data Exploratory Network (OPEN), Den mark; The Danish Center for Hormone Disrupting Chemicals (MST-611-00012); The Danish Research Council (4004-00352B_FSS); Novo Nordisk Foundation, Denmark (grant no. NNF19OC0058266 and NNF17OC0029404); Sygeforsikring Danmark (journalnr. 2021-0173); The Collaborative foundation between Odense University Hospital and Rigshospitalet, Helsefonden, Beckettfonden, the Danish Mental Health Fund, Health Insurance Denmark. The LS-MS/MS equipment was financially supported by the Velux Foundation. PCB: PCB cohort was funded by the Slovak Research and Development Agency, project no. APVV-0571-12 and the Ministry of Health of the Slovak Republic, project no. 2014/47-SZU-11. The APC was funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 733032.S
    corecore